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Abstract
In a previous paper, we adopted the method using quantum mutual entropy to
measure the degree of entanglement in the time development of the Jaynes–
Cummings model. In this paper, we formulate the entanglement in the time
development of the Jaynes–Cummings model with squeezed states, and then
show that the entanglement can be controlled by means of squeezing.
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1. Introduction

Recently, it has become known that a quantum entangled state plays an important role in such
fields of quantum information theory as quantum teleportation and quantum computation. The
research on quantifying entangled states has been done by several measures [1, 2].

If we want to quantify entangled states, we should know whether they are pure states
or mixed states. That is, if the entangled states are pure states, then it is well known that
it is sufficient to use von Neumann entropy [3] for the reduced states [1, 2], because, for
pure states, it has a unique measure. However, for mixed states, it does not have a unique
measure. Therefore we need a proper measure of entanglement for mixed states. The
degree of entanglement for mixed states has been studied by some entropic measures such as
entanglement of formation [1] and quantum relative entropy [2] and so on. Vedralet al [2]
defined the degree of the entangled statesσ as a minimum distance between all disentangled
statesρ ∈ D such thatE(σ) ≡ minρ∈DD(σ‖ρ) whereD is any measure of distance between
the two statesσ andρ. For an example, we can choose quantum relative entropy asD. Then,

E(σ) = min
ρ∈D

S(σ |ρ) (1)

whereS(σ |ρ) ≡ tr σ(logσ − logρ) is quantum relative entropy [4, 5]. Since this measure
has to take a minimum over all disentangled states, it is difficult to calculate analytically for
an actual model, such as the Jaynes–Cummings model, so we use the degree of entanglement
due to mutual entropy [6], which we call DEM in the following, as defined below. Moreover,
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there has been no fixed definition of entanglement measure, though some measures have been
defined other than the above measure defined in (1). So we can use the convenient measure
we want, case-by-case.

Letσ be a state inS1 ⊗S2 andρk are the marginal states inSk (i.e., trj σ = ρk(k �= j)).
Then our degree of entanglement due to mutual entropy (DEM) is defined by:

Iσ (ρ1, ρ2) ≡ tr σ(logσ − logρ1 ⊗ ρ2).

Note that the tensor product stateρ1 ⊗ ρ2 is one of the disentangled states. This DEM
represents the difference between the entangled states and disentangled states. This quantity
is also applied to classify entanglement in [7]. If we treat only entangled pure states, it is
sufficient to apply von Neumann entropy for thereduced statesρk ≡ trj σ ∈ Sk(k �= j).
Because we suppose thatσ ∈ S1 ⊗ S2 are entangled pure states, then the von Neumann
entropy is equal to 0 (S(σ) = 0). Moreover, according to the following triangle inequality of
Araki and Lieb [8]:

|S(ρ1)− S(ρ2)| � S(σ) � S(ρ1) + S(ρ2)

we haveS(ρ1) = S(ρ2). Thus we have

Iσ (ρ1, ρ2) = tr σ(logσ − logρ1 ⊗ ρ2)

= S(ρ1) + S(ρ2)− S(σ).
= 2S(ρ1). (2)

Therefore, for entangled pure states, the DEM becomes twice the entropy of the induced
marginal states. That is, if we want to know the degree of the entangled pure states, it is
sufficient to use thereduced von Neumann entropy. However, in general the reduced von
Neumann entropies for entangled mixed states are not always unique, namely, they depend on
how the partial trace is taken. Therefore we need a unique measure for the entangled mixed
states. Thus in this paper we apply the DEM, not the reduced von Neumann entropy, in order
to measure the degree of entanglement for the entangled mixed states, because the DEM can
measure the degree of entanglement directly without taking the partial trace. From (2), we
also find that the entanglement degree in pure states is bigger than that in mixed states. In this
short paper, we will formulate the entanglement degree in the Jaynes–Cummings model with
squeezed states using DEM and then try to control it by means of the squeezing parameterr.

2. Atomic system

The quantum electrodynamical interaction of a single two-level atom with a single mode of
an electromagnetic field is described by the well known Jaynes–Cummings model (JCM) [9].
The JCM is the simplest nontrivial model of two interacting fully quantum systems and has
an exact solution. It also demonstrates some interesting phenomena such as collapses and
revivals. It has been investigated in detail by many researchers from various points of view.
For details, the reader may refer to the excellent reviews [10, 11]. The JCM is not only an
important problem itself but also gives an excellent example of the so-called quantum open
system problem [12], namely the interaction between a system and a reservoir.

So, we treated the JCM as a problem in non-equilibrium statistical mechanics and
applied quantum mutual entropy [13] based on von Neumann entropy by finding the quantum
mechanical channel [13] which expresses the state change of the atom on the JCM. This study
was an attempt to obtain a new insight into the dynamical change of the state for the atom on
the JCM by the quantum mutual entropy [14].
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On the other hand, this model has one of the most interesting features which is the
entanglement developed between the atom and the field during the interaction. There have
been several approaches to analyse the time evolution in this model, for instance, von Neumann
entropy and atomic inversion. Moreover, it is not suitable for the quantum mutual entropy
which is mentioned above to measure the degree of entanglement. Because the quantum
mutual entropy is defined for the quantum mechanical channel and, when we obtain it, we
take the partial trace over one system, then the entanglement tends to loss. Therefore, in this
short paper, we will apply the DEM to analyse the entanglement of the time development of
the JCM, since the DEM can measure the degree of entangled states directly without taking
the partial trace.

The resonant JCM Hamiltonian can be expressed by the rotating-wave approximation in
the following form:

H = HA +HF +HI

HA = 1

2
h̄ω0σz HF = h̄ω0a

∗a

HI = h̄g(a ⊗ σ+ + a∗ ⊗ σ−)
whereg is a coupling constant,σ± are the pseudo-spin matrices of a two-level atom,σz is
thez-component of the Pauli spin matrix, anda (resp.a∗) is the annihilation (resp. creation)
operator of a photon. In general, it is almost impossible to physically realize the pure states,
so we suppose the initial states of the atom are the mixed states which are the more realistic
representation of the states. We now suppose that the initial states of the atom are superposition
states of the ground states and the excited states:

ρ = λ0E0 + λ1E1 ∈ SA

whereE0 = |1〉〈1|, E1 = |2〉〈2|, λ0 + λ1 = 1. This means that we have a thermalized atom
where there is no coherence between the levels. Let the field initially be in squeezed states:

ω = |θ; ξ〉〈θ; ξ | ∈ SF |θ; ξ〉 = exp

(
−1

2
|β|2

) ∑
l

βl√
l!

|l; ξ〉

whereβ = µθ + νθ∗, ξ = reiθ , µ = coshr, ν = sinhr andr is often called a squeezing
parameter. The continuous mapE∗

t , which is often calledlifting [15], describing the time
evolution between the atom and the field for the JCM, is defined by the unitary operator
generated byH such that

E∗
t : SA → SA ⊗ SF

E∗
t ρ = Ut(ρ ⊗ ω)U∗

t (3)

Ut ≡ exp

(
−it
H

h̄

)
.

This unitary operatorUt is written as

Ut = exp

(
− itH

h̄

)
=

∞∑
n=0

1∑
j=0

En,j
∣∣ (n)j 〉〈

 
(n)
j

∣∣ (4)

whereEn,j = exp[−it{ω0(n+ 1
2)+(−1)j!n}] are the eigenvalues with!n = g√n + 1, called

the Rabi frequency, and (n)j are the eigenvectors associated withEn, j.
The transition probability for which the atom is initially prepared in the excited state and

stays in the excited state after timet is given by

c (t) = |〈n⊗ 2|Ut |n⊗ 2〉|2 =
∑
n

P (n) cos2!nt.
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Also the transition probability for which the atom is initially prepared in the excited state
and is at the grounded state after the timet is given by

s(t) = |〈n + 1⊗ 1|Ut |n⊗ 2〉|2 =
∑
n

P (n) sin2!nt.

We note here thatP(n) is formulated by

P(n) = 1

|µ|n!
( |ν|

2|µ|
)n∣∣∣∣Hn

(
β√
2µν

)∣∣∣∣
2

exp

(
− |β|2 +

ν

2µ
β2 +

ν∗

2µ
β∗2

)
(5)

whereβ = µθ + νθ∗ andHn(x) are Hermite polynomials.

3. Derivation of the DEM

In this section, we derive the DEM for a two-level atom with squeezed state. From (4) and
(5), we obtain the lifting expression as follows;

E∗
t ρ =

∑
n

{
λ0P(n + 1) sin2!nt + λ1P(n) cos2!nt

}|2〉〈2| ⊗ |n〉〈n|

+
i

2

∑
n

sin 2!nt(λ1P(n) − λ0P(n + 1))|2〉〈1| ⊗ |n〉〈n + 1|

+
i

2

∑
n

sin 2!nt(λ0P(n + 1)− λ1P(n))|1〉〈2| ⊗ |n + 1〉〈n|

+
∑
n

{
λ0P(n) sin2!nt + λ1P(n + 1) cos2!nt

}|1〉〈1| ⊗ |n + 1〉〈n + 1|. (6)

According to [16], both atomic and field entropies are equal when the system is isolated;
that is, the final states are the pure states. However, since we haveE∗

t ρ �= (E∗
t ρ)

2, the final
states of the JCM are the entangled mixed states, so we should apply the DEM, not the reduced
von Neumann entropy. Thus the DEM for a two-level atom with squeezed state is given by

IE∗
t ρ

(
ρAt , ρ

F
t

) = tr E∗
t ρ

(
logE∗

t ρ − logρAt ⊗ ρFt
)

= −2(e1(t) loge1(t) + e4(t) loge4(t)) + κ+(t) logκ+(t) + κ−(t) logκ−(t) (7)

where

κ±(t) = 1

2

{
(e1(t) + e4(t))±

√
(e1(t) + e4(t))2 − 4(e1(t)e4(t)− e2(t)e3(t))

}
e1(t) =

∑
n

{
λ0P(n + 1) sin2!nt + λ1P(n) cos2!nt

}

e2(t) = i

2

∑
n

sin 2!nt(λ1P(n) − λ0P(n + 1))

e3(t) = i

2

∑
n

sin 2!nt(λ0P(n + 1)− λ1P(n))

e4(t) =
∑
n

{
λ0P(n) sin2!nt + λ1P(n + 1) cos2!nt

}
.

4. Numerical computations

On the basis of the analytical solution presented in the previous section, in this section we
examine the temporal evolution of the transition probabilityc(t), the probability distribution
and the degree of entanglement for different values of the squeezed parameterr.
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Figure 1. c(t) for time t as r = 0 (a), r = 1 (b) and r = 2 (c).

We display the time evolution of the transition probability c(t) in a two-level atom with
squeezed states in figure 1, since this measure has often been used to analyse the time
development of the JCM. Figure 1(a) is obtained by setting the squeezing parameter r = 0,
namely a coherent state which is a special case of the squeezed states and the change of the
figure is well known as a nature of the coherent states JCM [17]. To visualize the influence
of the squeezed states in the transition probability c(t) we set different values of the squeezing
parameter r (see figures 1(b) and 1(c)), while all the other parameters are the same as in figure
1(a). From these figures, it is remarkable that the frequency of the oscillations gradually gets
to increase with the gain of the squeezing parameter r. However, the size of the width of
the amplitude in the three figures is not monotone for the gain of the squeezing parameter r.

These incomprehensible phenomena depend on the oscillation of the probability
distribution of the squeezed state with increasing r [18], as also shown in figure 2,
approximately described as a function of the photon number n in the case of the mean photon
number |θ | = √

5. It is known that the source of the oscillation is caused by the interference
[19]. The effect of the squeezing for a two-level atom is examined in [20].

We would like to know how this property of the squeezing influences the entanglement
of the JCM. Figure 3 shows the three-dimensional plot of the DEM as a function of λ1 and r
when the time t is fixed at tr = 2πθ/g, which is often called the revival time. From this figure,
we find that the DEM is not monotone for the squeezing parameter r due to non-monotonicity
of the amplitude of the transition probability for the squeezing parameter r. The probability
distribution functions in squeezed states oscillate as the squeezing parameter r (see figure 2),
and it is known that this oscillation is caused by the interference in phase space [19]. From
figure 3, we also find that the degree of entanglement in r = 3 is stronger than that in r = 0,
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Figure 2. The probability distribution P(n) for r = 0
(solid line), r = 1 (dotted line) and r = 2 (dashed line).

Figure 3. The DEM for λ1 (0 � λ1 � 1) and
r (0 � r � 3) when the time t is fixed at tr = 2πθ/g.

which means that by squeezing we can obtain stronger entanglement than when we use the
coherent states as the initial photon states; that is, it is possible to control the degree of the
entanglement in the JCM by means of the squeezed states.

An interesting feature to observe in figure 3 is the symmetry aroundλ1 = 0.5, which means
that the DEM for the atom, whether in ground or excited states, has the same probability. We
also find by using the initial mixed states of the atom that the DEM always takes the maximum
value in λ1 = 0.5 for any r and the minimum value in λ1 = 0 or 1 for any r. This result shows
that we obtain the maximum degree of entanglement in the JCM when we use the most mixed
states ρ = 0.5E0 + 0.5E1 as the initial atomic state. This may be useful for the construction
of a quantum computer.

5. Conclusion

We have studied the influence of the squeezed states on the degree of entanglement which is
defined due to mutual entropy for a two-level atom. This shows that the degree of entanglement
is very sensitive to the squeezing parameter. For small values of the squeezing parameter, a
decrease of the degree of entanglement is shown, while for large values, an increase of the
degree of entanglement is obtained. This is manifested in the degree of entanglement as it
settles to a constant value for further increase of the squeezing parameter. This means that
one can control the degree of entanglement by using the squeezing. We also found that the
degree of entanglement in the JCM for any squeezing parameter r takes the maximum value,
applying the mixed states to the initial atomic states. Moreover, we are interested in knowing
if the DEM has an upper bound for squeezing parameter r. However, from figure 3 alone, we
do not know whether the DEM has an upper bound or goes to infinity. This will remain as an
ongoing problem.
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